$S=0.994$
2098 reflections
166 parameters H -atom coordinates refined;
$U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$
$(\Delta / \sigma)_{\text {max }}=-0.067$
$\Delta \rho_{\text {max }}=0.405 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.351 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{V}-\mathrm{N} 1$	$1.653(4)$	$\mathrm{V}-\mathrm{C} 9$	$2.236(6)$
$\mathrm{V}-\mathrm{Cll}$	$2.258(2)$	$\mathrm{V}-\mathrm{Cl0}$	$2.246(6)$
$\mathrm{V}-\mathrm{Cl} 2$	$2.259(2)$	$\mathrm{V}-\mathrm{Cll}$	$2.354(5)$
$\mathrm{V}-\mathrm{C} 7$	$2.351(5)$	$\mathrm{V}-\mathrm{C} p \dagger$	$1.968(6)$
$\mathrm{V}-\mathrm{C} 8$	$2.263(6)$		
$\mathrm{N} 1-\mathrm{V}-\mathrm{Cll}$	$99.72(14)$	$\mathrm{Cll}-\mathrm{V}-\mathrm{C} p$	$114.1(8)$
$\mathrm{N} 1-\mathrm{V}-\mathrm{Cl} 2$	$102.30(14)$	$\mathrm{Cl} 2-\mathrm{V}-\mathrm{Cp}$	$113.5(8)$
$\mathrm{ClI}-\mathrm{V}-\mathrm{Cl} 2$	$103.65(6)$	$\mathrm{N} 1-\mathrm{V}-\mathrm{C} p$	$121.2(7)$
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{V}$	$169.1(4)$		

$\dagger C p$ is the centroid of the Cp ring.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL93.

The authors would like to thank the EPSRC (MCWC and JMC) and BP Chemicals Ltd (MCWC) for financial support.

[^0]
References

Becker, H., Häusler, H. J. \& Preuss, F. (1987). Z. Naturforsch. Teil B, 42, 881-888.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Buijink, J.-K. F., Teuben, J.-H., Kooijman, H. \& Spek, A. L. (1994). Organometallics, 13, 2922-2924.
Chan, M. C. W. (1995). PhD thesis, University of Durham. England.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30. 580-584.
Mayer, J. M. \& Nugent, W. A. (1988). In Metal-Ligand Multiple Bonds. New York: Wiley Interscience.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Copper(II) and Nickel(II) Complexes of 4-Methyl-4,7-diazadecane-1,10-diamine

Tian-Huey Lu, ${ }^{a}$ Tahir H. Tahirov, ${ }^{a}$ Kelun Shu ${ }^{b}$ and Chung-Sun Chung ${ }^{b}$
${ }^{a}$ Department of Physics, National Tsing University, Hsinchu, Taiwan 30043, and ${ }^{b}$ Department of Chemistry, National Tsing University, Hsinchu, Taiwan 30043

(Received 14 February 1994; accepted 13 May 1996)

Abstract

The X-ray crystal structures of (4-methyl-4,7-di-azadecane-1,10-diamine- $\left.N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right)($ perchlorato- O)copper(II) perchlorate, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\left(\mathrm{ClO}_{4}\right)\right] \mathrm{ClO}_{4}$, and (4-methyl-4,7-diazadecane-1,10-diamine- $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$)nickel(II) diperchlorate, $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, are isomorphous with minor dissimilarities. The copper(II) complex is six-coordinate in a distorted octahedral geometry, with the four N atoms of the tetradentate ligand equatorial and the two O atoms of the perchlorate groups axial. The nickel(II) complex is four-coordinate in a square-planar geometry. In both complexes, the conformations of the three consecutive six-, five- and six-membered rings are chair, gauche and chair, respectively. In both crystals, hydrogen bonds involving the amino groups and perchlorate O atoms help stabilize the crystal structure.

Comment

The crystal structures of the copper(II) complex of N, N^{\prime}-bis(3-aminopropyl)-1,2-ethanediamine and its associates have been reported previously (Lee et al., 1986; Tahirov, Lu, Shu \& Chung, 1994a, b, 1995). In order to investigate the steric effects of N-alkyl groups on the structures of the copper(II) and nickel(II) complexes, we have studied the crystal structures of the title complexes (4 -methyl-4, 7-diazadecane-1,10-diamine)(perchlorato- O) copper(II) perchlorate, (1), and (4-methyl-4,7-diazadecane-1,10-diamine)nickel(II) diperchlorate, (2).

(1)

(2)

The structure of the Ni^{11} complex is isomorphous with that of the Cu^{11} complex with minor dissimilarities. Appreciable electron-density residues were observed in the penultimate difference Fourier map. The occupan-
cies of the disordered perchlorate O atoms in the $\mathrm{Cu}^{\text {II }}$ complex, not found in the $\mathrm{Ni}^{\mathrm{II}}$ complex, were assigned in accordance with their relative peak heights and thus reduced the R factor in the structure refinement. The coordination geometry about the $\mathrm{Cu}^{\mathrm{II}}$ ion is octahedral, with the four N atoms equatorial and two perchlorate O atoms axial. Contrary to the copper(II) complex, the nickel(II) complex is four-coordinate (inferred from the $M-\mathrm{O}$ distances in Table 2) and the geometry about the $\mathrm{Ni}^{\mathrm{II}}$ ion is square planar. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{N}$ distances span very narrow ranges and are comparable to the average $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{N}$ distances of 2.03 (3) and 1.95 (4) A found for $\mathrm{Cu}^{\mathrm{II}}$-tetramine and $\mathrm{Ni}^{\mathrm{II}}$-tetramine complexes, respectively (Lu, Chung \& Ashida, 1991). Both of these complexes have either the $R S$ or $S R$ configuration for the two chiral amine- N centers. In the copper(II) complex, a perchlorate ion $\left[\mathrm{Cl}(1) \mathrm{O}_{4}\right]$ functions as a bridge ligand (Fig. 1) and is bonded to two Cu atoms, while another perchlorate anion $\left[\mathrm{Cl}(2) \mathrm{O}_{4}\right]$ is unbonded. In the nickel(II) complex, both perchlorate groups are unbonded. The planarity of the N_{4} plane in the $\mathrm{Ni}^{\mathrm{II}}$ complex is better than that in the $\mathrm{Cu}^{\text {II }}$ complex. The $\mathrm{Ni}^{\mathrm{II}}$ ion is 0.025 (3) \AA from the best N_{4} plane, which is coplanar within 0.012 (8) \AA, and the corresponding values for the $\mathrm{Cu}^{\mathrm{II}}$ ion are $0.06(1)$ and $0.021(4) \AA$. In both the $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Ni}^{\text {II }}$ complexes, the two lateral six-membered rings are in stable chair forms, while the central fivemembered ring is in a stable gauche form. The hydro-

Fig. 1. A perspective view of the molecule of the $\mathrm{Cu}^{I I}$ complex with the atom-numbering scheme, excluding the perchlorate $\mathrm{Cl}(2) \mathrm{O}_{4}$ group and H atoms attached to C atoms. Displacement ellipsoids are drawn at the 30% probability level (ORTEPII; Johnson, 1976). The molecule of the Ni^{11} complex is isomorphous with that of the $\mathrm{Cu}^{\text {II }}$ complex, but without the $\mathrm{Cl}(1) \mathrm{O}_{4}$ anion bonded to the metal.
gen bonds among the amino groups and the perchlorate O atoms are not linear in donor and acceptor arrangements and constitute weak bonding. They help stabilize the crystal structures of both title complexes.

Experimental

The ligand was synthesized according to the method reported by Lu, Shan, Chao \& Chung (1987). A solution of $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\right] .6 \mathrm{H}_{2} \mathrm{O}(7.3 \mathrm{~g}, 0.02 \mathrm{~mol})$ in methanol $(80 \mathrm{ml})$ was added dropwise to a solution of the ligand $(3.76 \mathrm{~g}, 0.02 \mathrm{~mol})$ in ethanol (80 ml). The color of the solution changed rapidly to violet. The resulting solution was stirred for 3 h on a steam bath and then evaporated to dryness. The solid obtained was dissolved in water and $\mathrm{Cu}(\mathrm{OH})_{2}$ filtered off. Single crystals of the copper(II) complex were obtained from this aqueous solution by slow evaporation. The same procedure was used for the preparation of the nickel(II) complex.

Complex (1)

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\left(\mathrm{ClO}_{4}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=450.76$
Monoclinic
$P 2_{1} / n$
$a=8.781$ (1) \AA
$b=15.021$ (2) \AA
$c=13.452(3) \AA$
$\beta=102.18(2)^{\circ}$
$V=1734.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.726 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.59, T_{\text {max }}=0.70$
3218 measured reflections
3048 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.65-19.01^{\circ}$
$\mu=1.62 \mathrm{~mm}^{-1}$
$T=298$ (3) K
Rod
$0.34 \times 0.31 \times 0.22 \mathrm{~mm}$
Blue-violet

2601 reflections with
$I \geq 1.5 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 17$
$l=0 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: $\pm 0.8 \%$

Refinement

Refinement on F
$R=0.036$
$w R=0.047$
$S=1.19$
2601 reflections
278 parameters
Only H-atom U 's refined $w=1 /\left[\left(F_{o}\right)^{2}+0.001\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.740$
Complex (2)
Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=445.92$
$\Delta \rho_{\text {max }}=0.65(8) \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.56(8)$ e \AA^{-3}
Extinction correction:
Zachariasen (1968)
Extinction coefficient: 0.46 (6) (length in mm)

Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Monoclinic
$P 2_{1} / n$
$a=8.732(1) \AA$
$b=14.800$ (2) \AA
$c=13.655$ (3) \AA
$\beta=100.14(2)^{\circ}$
$V=1737.1(5) \AA^{3}$
$Z=4$
$D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical via ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.63, T_{\text {max }}=0.66$
5252 measured reflections
5066 independent reflections

Refinement

Refinement on F
$R=0.078$
$w R=0.087$
$S=1.24$
4056 reflections
218 parameters
H atoms not refined
Unit weights applied
$(\Delta / \sigma)_{\max }=0.001$

Cell parameters from 25 reflections
$\theta=7.52-17.17^{\circ}$
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=298$ (3) K
Parallelepiped
$0.44 \times 0.38 \times 0.28 \mathrm{~mm}$ Orange

056 refiections with
$I \geq 1.5 \sigma(I)$
$\theta_{\text {max }}=29.9^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 20$
$l=0 \rightarrow 19$
3 standard reflections frequency: 60 min intensity decay: $\pm 0.5 \%$

Table 1. Selected geometric parameters $\left(A^{\circ},^{\circ}\right)$ for complexes (1) and (2)
$M-\mathrm{O}(1)$
$M-\mathrm{O}(2) \ddagger$
$M-\mathrm{N}(1)$
$M-\mathrm{N}(2)$
$M-\mathrm{N}(3)$
$M-\mathrm{N}(4)$
$\mathrm{N}(1)-\mathrm{C}(1)$
$\mathrm{N}(2)-\mathrm{C}(3)$
$\mathrm{N}(2)-\mathrm{C}(4)$
$\mathrm{N}(3)-\mathrm{C}(5)$
$\mathrm{N}(3)-\mathrm{C}(6)$
$\mathrm{N}(3)-\mathrm{C}(7)$
$\mathrm{N}(4)-\mathrm{C}(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{O}(1)-M-\mathrm{O}(2)$
$\mathrm{O}(1)-M-\mathrm{N}(1)$
$\mathrm{O}(1)-M-\mathrm{N}(2)$
$\mathrm{O}(1)-M-\mathrm{N}(3)$
$\mathrm{O}(1)-M-\mathrm{N}(4)$
$\mathrm{O}(2)-M-\mathrm{N}(1)$
$\mathrm{O}(2)-M-\mathrm{N}(2)$
$\mathrm{O}(2)-M-\mathrm{N}(3)$
$\mathrm{O}(2)-M-\mathrm{N}(4)$
$\mathrm{N}(1)-M-\mathrm{N}(2)$
$\mathrm{N}(1)-M-\mathrm{N}(3)$
$\mathrm{N}(1)-M-\mathrm{N}(4)$

(1) $M=\mathrm{Cu}$	(2) $M=\mathrm{Ni} \dagger$
$2.558(3)$	$2.886(7)$
$2.713(3)$	$2.901(7)$
$2.026(3)$	$1.938(5)$
$2.017(3)$	$1.943(6)$
$2.058(3)$	$1.956(5)$
$2.011(3)$	$1.930(6)$
$1.483(4)$	$1.468(9)$
$1.473(4)$	$1.46(1)$
$1.491(4)$	$1.48(1)$
$1.489(4)$	$1.486(9)$
$1.490(4)$	$1.471(9)$
$1.497(4)$	$1.51(1)$
$1.486(4)$	$1.48(1)$
$1.499(5)$	$1.50(1)$
$1.519(6)$	$1.52(1)$
$1.489(5)$	$1.46(1)$
$1.510(6)$	$1.52(1)$
$1.512(6)$	$1.48(1)$
$164.1(1)$	$159.2(3)$
$86.9(1)$	$84.0(2)$
$86.4(1)$	$84.0(2)$
$95.3(1)$	$96.9(2)$
$98.4(1)$	$98.4(2)$
$87.5(1)$	$88.1(2)$
$79.1(1)$	$77.3(3)$
$89.9(1)$	$91.1(2)$
$96.5(1)$	$100.6(3)$
$93.5(1)$	$93.6(2)$
$177.3(1)$	$179.1(2)$
$90.5(1)$	$88.2(2)$

$\mathrm{N}(2)-M-\mathrm{N}(3)$	$85.2(1)$	$86.7(2)$
$\mathrm{N}(2)-M-\mathrm{N}(4)$	$174.0(1)$	$177.2(2)$
$\mathrm{N}(3)-M-\mathrm{N}(4)$	$90.7(1)$	$91.5(2)$
$M-\mathrm{O}(1)-\mathrm{Cl}(1)$	$128.0(2)$	$118.4(4)$
$M-\mathrm{O}(2)-\mathrm{Cl}(1)$	$135.6(2)$	$130.4(5)$
$M-\mathrm{N}(1)-\mathrm{C}(1)$	$120.4(2)$	$124.3(5)$
$M-\mathrm{N}(2)-\mathrm{C}(3)$	$120.0(2)$	$122.8(5)$
$M-\mathrm{N}(2)-\mathrm{C}(4)$	$106.3(2)$	$107.3(4)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(4)$	$112.2(3)$	$11.9(6)$
$M-\mathrm{N}(3)-\mathrm{C}(5)$	$106.1(2)$	$110.5(4)$
$M-\mathrm{N}(3)-\mathrm{C}(6)$	$110.6(2)$	$112.9(4)$
$M-\mathrm{N}(3)-\mathrm{C}(7)$	$112.2(2)$	$107.1(6)$
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(6)$	$108.7(3)$	$108.0(6)$
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(7)$	$108.9(3)$	$110.8(6)$
$\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(7)$	$110.2(3)$	$116.1(5)$
$M-\mathrm{N}(4)-\mathrm{C}(9)$	$115.1(2)$	$113.4(6)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.5(3)$	$113.2(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.2(3)$	$112.3(7)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$112.1(3)$	$106.2(6)$
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$106.2(3)$	$109.7(6)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.9(3)$	$112.7(6)$
$\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$114.6(3)$	$114.4(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$114.5(3)$	$112.2(6)$
$\mathrm{N}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.0(3)$	

\dagger Atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$ of the Ni complex and atom $\mathrm{O}(2)$ of the Cu complex are not considered to be bonded. \ddagger The symmetry code $\left(\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ applies to the $\mathrm{O}(2)$ atom of the Cu complex and $\left(x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}\right)$ to the $O(2)$ atom of the Ni complex.

The structures were solved by direct and Fourier methods and full-matrix least-squares refinements were carried out. H atoms were located by difference Fourier methods. The program used for calculations was NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989).

The authors are indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data. We also thank the National Science Council, ROC, for support under grants NSC82-0208-M007-119 and NSC82-0208-M00732.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: HR1023). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2 HU , England.

References

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lee, T.-J., Lee, T.-Y.. Hong, C.-Y., Hsieh, M.-Y., Wu, D.-T. \& Chung, C.-S. (1986). Acta Cryst. C42, 1316-1319.

Lu, T.-H., Chung, C.-S. \& Ashida, T. (1991). J. Chin. Chem. Soc. 38, 147-153.
Lu, T.-H., Shan, H.-C., Chao, M.-S. \& Chung, C.-S. (1987). Acta Cryst. C43, 207-209.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24, 351-359.
Tahirov, T. H., Lu, T.-H., Shu, K. \& Chung, C.-S. (1994a). Acta Cryst. C50, 512-514.
Tahirov, T. H., Lu, T.-H., Shu, K. \& Chung, C.-S. (1994b). Acta Crvst. C50, 516-518.
Tahirov, T. H., Lu, T.-H., Shu, K. \& Chung, C.-S. (1995). Acta Cryst. C51, 229-232.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

[^0]: Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: CF1112). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

